Lect. 2: Light as EM Waves (Chap. 8 in Cheng)

In the beginning, God said

$$
\begin{aligned}
& \nabla \times \overline{\mathrm{E}}=-\frac{\partial \overline{\mathrm{B}}}{\partial \mathrm{t}}
\end{aligned} \begin{gathered}
\begin{array}{c}
\text { Material } \\
\text { Parameters }
\end{array}\left\{\begin{array}{l}
\varepsilon: \text { permittivity } \\
\mu: \text { permeability }
\end{array}\right. \\
\nabla \times \overline{\mathrm{H}}=\overline{\mathrm{J}}+\frac{\partial \overline{\mathrm{D}}}{\partial \mathrm{t}} \\
\nabla \bullet \overline{\mathrm{D}}=\rho \quad \nabla^{2} \overline{\mathrm{E}}=\mu \varepsilon \frac{\partial^{2} \overline{\mathrm{E}}}{\partial \mathrm{t}^{2}} \quad \nabla^{2} \overline{\mathrm{H}}=\mu \varepsilon \frac{\partial^{2} \overline{\mathrm{H}}}{\partial \mathrm{t}^{2}} \\
\nabla \bullet \overline{\mathrm{~B}}=0 \quad\left\{\begin{array}{lc}
\bar{D}=\varepsilon \bar{E} \\
\bar{B}=\mu \bar{H} & \text { Wave Equations }
\end{array}\right. \\
\text { (source free, uniform medium) }
\end{gathered}
$$

Then, there was light!
\rightarrow Governs light propagation
\rightarrow Maxwell's Equations

Lect. 2: Light as EM Waves

Solutions for Wave Equations

$$
\nabla^{2} \overline{\mathrm{E}}=\mu \varepsilon \frac{\partial^{2} \overline{\mathrm{E}}}{\partial \mathrm{t}^{2}}
$$

Assume a plane-wave solution. For example, $\bar{E}=\bar{x} E_{0} e^{j(\omega t-k z)}$

$$
\begin{aligned}
\nabla^{2} \bar{E} & =\bar{x}\left(-k^{2}\right) E_{0} e^{j(\omega t-k z)} & k=\frac{2 \pi}{\lambda} \quad \omega=2 \pi f \\
\mu \varepsilon \frac{\partial^{2} \bar{E}}{\partial t^{2}} & =\bar{x} \mu \varepsilon\left(-\omega^{2}\right) E_{0} e^{j(\omega t-k z)} & f \cdot \lambda=\frac{1}{\sqrt{\mu \varepsilon}} \quad \text { Speed of light! } \\
k^{2} & =\mu \varepsilon \omega^{2} & \quad \text { Why use plane-wave solutions? } \\
\therefore k & =\omega \sqrt{\mu \varepsilon} \quad & \begin{array}{l}
\text { (exponential solutions, time-harmonic solutions, } \\
\text { phasor notation. } \cdots \text {) }
\end{array}
\end{aligned}
$$

Lect. 2: Light as EM Waves

How does the plane-wave solution look like?
For physical representation, $\operatorname{Re}\left[\bar{x} E_{0} e^{j(\omega t-k z)}\right]=\bar{x} E_{0} \cos (\omega t-k z)$

At $t=0$

At $\mathrm{t}>0$

A

\square

Lect. 2: Light as EM Waves

How about H-field?
$\nabla^{2} \overline{\mathrm{E}}=\mu \varepsilon \frac{\partial^{2} \overline{\mathrm{E}}}{\partial \mathrm{t}^{2}} \quad \bar{E}=\bar{x} E_{0} e^{j(\omega t-k z)}$
It can be shown from Maxwell's Equations,

$$
\overline{\mathrm{H}}=\overline{\mathrm{y}} \mathrm{H}_{0} \mathrm{e}^{\mathrm{j}(\omega t-\mathrm{kz})}
$$

Direction of E, H fields?
Direction of propagation?
Speed of propagation?
$\frac{E_{0}}{H_{0}}=\sqrt{\frac{\mu}{\varepsilon}}=\eta[\Omega]$

Lect. 2: Light as EM Waves

How does the plane-wave solution look like?

Lect. 2: Light as EM Waves

When a wave is propagating into

+ z direction: $\quad e^{j(\omega t-k z)}$
-z direction: $\quad e^{j(\omega t+k z)}$
+y direction: $\quad e^{j(\omega t-k y)}$
Any direction?
$e^{j \omega t} e^{-j k_{x} x} e^{-j k_{y} y} e^{-j k_{z} z}=e^{j(\omega t-\bar{k} \bullet \bar{R})}$
$\bar{k}=\bar{x} k_{x}+\bar{y} k_{y}+\bar{z} k_{z} \quad \bar{R}=\bar{x} x+\bar{y} y+\bar{z} z$
$|\bar{k}|=\frac{2 \pi}{\lambda}, \angle \bar{k}:$ direction of propagation

Lect. 2: Light as EM Waves

Polarization: Change of E -field direction with time

Linear Polarization $\bar{E}=\left(\bar{x} E_{0}+\bar{y} E_{0}\right) e^{j \omega t} e^{j k z}$

E_{x} and E_{y} in-phase

Lect. 2: Light as EM Waves

Circular Polarization

$$
\bar{E}=\left(\bar{x} E_{0}+\bar{y} j E_{0}\right) e^{j \omega t} e^{j k z}
$$

E_{x} and E_{y} out-of-phase Handedness?

Lect. 2: Light as EM Waves

Elliptical Polarization

$$
\bar{E}=\left(\bar{x} E_{0}+\bar{y} j 2 E_{0}\right) e^{j \omega t} e^{j k z}
$$

Lect. 2: Light as EM Waves

Homework: Due on $9 / 13$ before Tutorial

A uniform plane wave propagating in a dielectric medium has the E-field given as

$$
\bar{E}(t, z)=\bar{x} 2 \cos \left(10^{8} t-z / \sqrt{3}\right)+\bar{y} \sin \left(10^{8} t-z / \sqrt{3}\right)
$$

(a) What is the dielectric constant of the medium?
(b) What type of polarization does the wave have?
(c) What is the corresponding H -field?

